

LQ-LW40L-ZR4C

80km 40GBASE-ZR4 QSFP+ Optical Transceiver Module

Features

- QSFP+ MSA compliant
- Hot pluggable 38 pin electrical interface
- 4 LAN-WDM lanes MUX/DEMUX design
- 4x10G electrical interface
- Maximum power consumption 6.5W
- LC duplex connector
- Supports 40Gb/s aggregate bit rate
- Up to 80km transmission on single mode fiber
- Operating case temperature: 0°C to 70°C
- Single 3.3V power supply
- RoHS 2.0 compliant

Applications

- 40GBASE-ZR4 40G Ethernet
- Telecom networking

Description

It is designed for 80km optical communication applications. This module contains 4- lane optical transmitter, 4-lane optical receiver and module management block including 2 wire serial interface. The optical signals are multiplexed to a single-mode fiber through an industry standard LC connector. A block diagram is shown in Figure 1.

Transceiver Block Diagrams

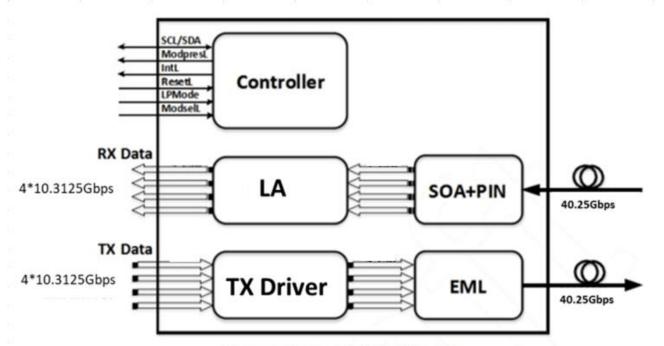


Figure 1. Transceiver Block Diagram

ModSelL:

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple modules on a single 2-wire interface bus. When the Mod-SelL is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host. ModSelL signal input node shall be biased to the "High" state in the module.

In order to avoid conflicts, the host system shall not attempt 2-wire interface communications within the Mod-SelL de-assert time after any modules are deselected. Similarly, the host shall wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de-asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL:

The ResetL pin shall be pulled to Vcc in the module. A low level on the ResetL pin for longer than the mini-mum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indi-cates a completion of the reset interrupt. The module indicates this by asserting "low" an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

LPMode:

The LPMode pin shall be pulled up to Vcc in the module. The pin is a hardware control used to put modules into a low power mode when high. By using the LPMode pin and a combination of the Power override, Power_set and High_Power_Class_Enable software control bits (Address A0h, byte 93 bits 0,1,2).

ModPrsL:

ModPrsL is pulled up to Vcc_Host on the host board and grounded in the module. The ModPrsL is asserted "Low" when inserted and deasserted "High" when the module is physically absent from the host connector.

IntL:

IntL is an output pin. When IntL is "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and shall be pulled to host supply voltage on the host board. The INTL pin is deas- is an open collector output and shall be pulled to host supply voltage on the host board. The INTL pin is deas-flag field is read (see SFF-8636).

Pin Descriptions

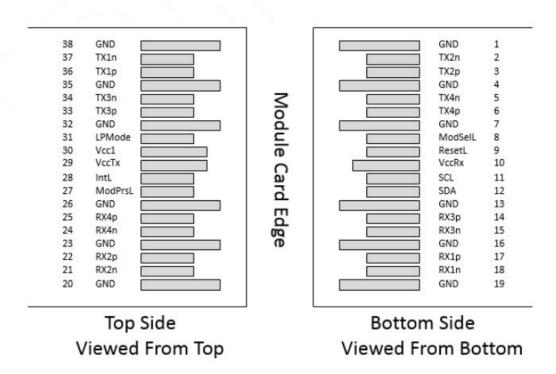


Figure 2. MSA compliant Connector

Pin	Symbol	Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3V Power Supply Receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Non-Inverted Data Output	
25	Rx4p	Receiver Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3V Power supply transmitter	
30	Vcc1	+3.3V Power supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Тх3р	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	

37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Maximum Supply Voltage	Vcc	0		3.6	V	
Storage Temperature	Ts	-40		85	$^{\circ}$ C	
Relative Humidity	RH	15		85	%	1
Damage Threshold, each lane	THd	6.5			dBm	

Notes:

1. Non-condensing

Operating Environments

Electrical and optical characteristics below are defined under this operating environment, unless otherwise spec-fied.

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	3.15	3.3	3.465	V
Case Temperature	Тор	0		70	$^{\circ}$
Link Distance with G.652				80	km

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power dissipation				6.5	W	
Supply Current	Icc			1.5	Α	Steady state
Transmitter						
Data Rate, each lane			10.3125		Gbps	
Differential Voltage pk-pk	Vpp			900	mV	At 1 MHz
Common Mode Voltage	Vcm	-350		2850	mV	
Transition time	Trise/Tfall	10			PS	20%~80%
Differential Termination Re- sistance						
Mismatch				10	%	
Eye width	EW15	0.46			UI	
Eye height	EH15	95			mV	
Receiver						
Data Rate, each lane			10.3125		Gbps	
Differential Termination Re- sistance						
Mismatch				10	%	At 1 MHz

Differential output voltage swing	Vout, pp		900	mV	
Common Mode Noise, RMS	Vrms		17.5	mV	
Transition time	Trise/Tfall	12		ps	20%~80%
Eye width	EW15	0.57		UI	
Eye height	EH15	228		mV	

Optical Characteristics

40GBASE-ZR4 Operation (EOL, TOP = 0 to +70 $^{\circ}\mathrm{C}$, VCC = 3.135 to 3.465 Volts)

Parameters	Unit	min	type	max	Note
Transmitter					I
Signaling Speed per Lane	Gb/s	10.3125 ± 100	10.3125 ± 100 ppm		
		1294.53		1296.59	
		1299.02		1301.09	
Transmit wavelengths	nm	1303.54		1305.63	
		1308.09		1310.19	
Side-Mode Suppression Ratio (SMSR)	dB	30			
Total Average Launch Power	dBm	8.0		12.5	
Average launch power, each lane	dBm	0		6.5	
Difference in launch power between any two lanes(Average and OMA)	dBm			3	
Average launch power of OFF transmitter, each lane	dBm			-30	
Extinction Ratio (ER)	dB	6			
RIN OMA	dB/Hz			-130	
Optical return loss tolerance	dB			20	
Transmitter reflectance	dB			-12	
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45	{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}		1
Mask margin	%	5			
Receiver		·			<u>.</u>
Signaling Speed per Lane	Gb/s	10.3125 ± 100	ppm		
		1294.53		1296.59	
		1299.02		1301.09	
Receive wavelengths	nm	1303.54		1305.63	
		1308.09		1310.19	
Average receiver power, each lane	dBm	-28		-7	
Receiver power, each lane(OMA)	dBm			-7	
Receiver reflectance	dB			-26	
Receiver sensitivity Average, each lane					
· -	dBm			-28	1

Receiver 3 dB electrical upper cutoff				
frequency, each lane	GHz		31	
Damage threshold, each lane	dBm	6.5		
LOS Assert	dBm	-40		
LOS Deassert	dBm		-29	
LOS Hysteresis	dB	0.5		

Notes:

Digital Diagnostic Monitoring Functions

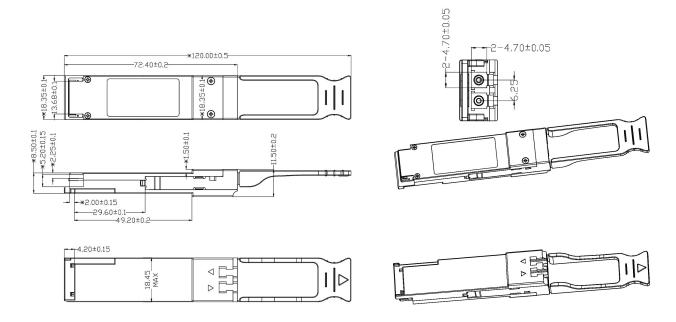
It supports the I2C-based Diagnostic Monitoring Interface (DMI) defined in document SFF-8636. The host can access real-time performance of transmitter and receiver optical power, temperature, sup-ply voltage and bias current.

Performance Item	RelatedBytes(A0[00]memory)	Monitor Error	Notes
Module temperature	22 to 23	+/-3°C	1, 2
Module voltage	26 to 27	< 3%	2
LD Bias current	42 to 49	< 10%	2
Transmitter optical power	50 to 57	< 3dB	2
Receiver optical power	34 to 41	< 4dB	2

Note

- Actual temperature test point is fixed on module case around Laser.
- Full operating temperature range

Alarm and Warning Thresholds


It supports alarms function, indicating the values of the preceding basic performance are lower or higher than the thresholds.

Performance Item	AlarmThresholdBytes(A0[03]memory)	Unit	Low threshold	High threshold
Temp Alarm	128 to 131	$^{\circ}\!\mathbb{C}$	-10	80
Temp Warning	132 to 135	$^{\circ}$ C	0	70
Voltage Alarm	144 to 147	V	2.97	3.63
Voltage Warning	148 to 151	V	3.135	3.465
TX Power Alarm	192 to 195	dBm	-4	8.2
TX Power Warning	196 to 199	dBm	-1	6.5
RX Power Alarm	176 to 179	dBm	-31	-4
RX Power Warning	180to183	dBm	-28	-7

^{1 ·} Sensitivity is specified at BER@1E-12

Mechanical Specifications

40G ZR4 QSFP+ transceivers are compatible with the QSFP+ Specification for pluggable form factor modules

ESD Design

Normal ESD precautions are required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and otherwise handled in an ESD protected environment utilizing standard grounded benches, floor mats, and wrist straps.

Parameter	Threshold value	Notes
ESD of high-speed pins	1KV	Human Body Model
ESD of low-speed pins	2KV	Human Body Model
Air discharge during operation	15KV	
Direct contact discharges to the case	8KV	

Safety Specification Design

- Do not look into fiber end faces without eye protection using an optical meter (such as magnifier and mi-croscope) within 100 mm, unless you ensure that the laser output is disabled. When operating an optical meter, observe the operation requirements.
- 2. The RX input optical power cannot be higher than the damage threshold. You need the optical attenuator with RX in order to meet the input optical power range if necessary.
- 3. It is the customized module, it can only interconnect with the same type module.

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering Information

Part Number	Description
LQ-LW40L-ZR4C	40GBASE-ZR4 80km QSFP+, Pull-tap, refer to Figure 3